MATH 245 S18, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction theorem, Nonconstructive Existence Proof theorem, Existence and Uniqueness Proof theorem, Fibonacci numbers. The Proof by Contradiction theorem states that for any propositions p, q, if $(p \wedge \neg q) \equiv$ F, then $p \rightarrow q$ is true. The Nonconstructive Existence Proof theorem states that if $(\forall x \in D, \neg P(x)) \equiv F$, then $\exists x \in D, P(x)$ is true. The Existence and Uniqueness Proof theorem states that to prove there is exactly one $x \in D$ for which $P(x)$ holds, we prove both (a) $\exists x \in D, P(x)$ and (b) $\forall x, y \in D,(P(x) \wedge P(y)) \rightarrow(x=y)$. The Fibonacci numbers are a recurrence given by $F_{0}=0, F_{1}=1, F_{k}=F_{k-1}+F_{k-2}$ (for $k \geq 2$).
2. Carefully define the following terms: Proof by (basic) Induction, Proof by Reindexed Induction, big Omega (Ω), big Theta (Θ).
To prove $\forall x \in \mathbb{N}, P(x)$ by (basic) induction, we must (a) prove that $P(1)$ is true, and (b) prove $\forall x \in \mathbb{N}, P(x) \rightarrow P(x+1)$. To prove $\forall x \in \mathbb{N}, P(x)$ by reindexed induction, we must (a) prove that $P(1)$ is true, and (b) prove $\forall x \in \mathbb{N}$ with $x \geq 2, P(x-1) \rightarrow P(x)$. Given sequences a_{n}, b_{n}, we say that $a_{n}=\Omega\left(b_{n}\right)$ if $\exists n_{0} \in \mathbb{N}, \exists M \in \mathbb{R}, \forall n \geq n_{0}, M\left|a_{n}\right| \geq$ $\left|b_{n}\right|$. Given sequences a_{n}, b_{n}, we say that $a_{n}=\Theta\left(b_{n}\right)$ if $a_{n}=O\left(b_{n}\right)$ and $a_{n}=\Omega\left(b_{n}\right)$.
3. Suppose that an algorithm has runtime specified by recurrence relation $T_{n}=4 T_{n / 2}+n^{2}$. Determine what, if anything, the Master Theorem tells us.
In the notation of the Master Theorem, $a=4, b=2, c_{n}=n^{2}$. We calculate $d=$ $\log _{2} 4=2$. Since $c_{n}=n^{2}=\Theta\left(n^{2}\right)=\Theta\left(n^{d}\right)$, the "middle c_{n} " case applies, telling us that $T_{n}=\Theta\left(n^{2} \log n\right)$.
4. Let $x \in \mathbb{R}$. Prove that $\lceil x\rceil$ is unique; that is, prove that there is at most one $n \in \mathbb{Z}$ with $n-1<x \leq n$.
Let $n, n^{\prime} \in \mathbb{Z}$ with $n-1<x \leq n$ and $n^{\prime}-1<x \leq n^{\prime}$. We have $n-1<x \leq n^{\prime}$ so $n-1<n^{\prime}$ and $n<n^{\prime}+1$. But also $n^{\prime}-1<x \leq n$ so $n^{\prime}-1<n$. Combining the two inequalities, we get $n^{\prime}-1<n<n^{\prime}+1$. Applying Theorem 1.12 (since $n, n^{\prime} \in \mathbb{Z}$), we conclude that $n=n^{\prime}$.
5. Let $x \in \mathbb{R}$. Prove that $\lceil x\rceil$ exists; that is, prove that there is at least one $n \in \mathbb{Z}$ with $n-1<x \leq n$.
We will use minimum element induction. Define $S=\{m \in \mathbb{Z}: m \geq x\}$, a nonempty set of integers with x as a lower bound. Hence S has some minimum element n. $x \leq n$ because $n \in S$. We have two cases: if $n-1<x$, we are done. If instead $n-1 \geq x$, then $n-1$ is an integer, and $\geq x$, so $n-1 \in S$. But then n wasn't the minimum element, a contradiction. Hence $n-1<x \leq n$.
6. Let $n \in \mathbb{Z}$. Prove that $\frac{(n-1) n(n+1)}{3} \in \mathbb{Z}$.

We apply the Division Algorithm to get integers q, r with $n=3 q+r$ and $0 \leq r<3$. There are three cases:
Case $r=0: \frac{(n-1) n(n+1)}{3}=\frac{(n-1) 3 q(n+1)}{3}=(n-1) q(n+1)$.
Case $r=1: \frac{(n-1) n(n+1)}{3}=\frac{(3 q+1-1) n(n+1)}{3}=q n(n+1)$.
Case $r=2: \frac{(n-1) n(n+1)}{3}=\frac{(n-1) n(3 q+2+1)}{3}=(n-1) n(q+1)$.
In all three cases, $\frac{(n-1) n(n+1)}{3}$ is an integer.
7. Solve the recurrence given by $a_{0}=0, a_{1}=6, a_{n}=a_{n-1}+2 a_{n-2}$ (for $n \geq 2$).

The characteristic polynomial is $r^{2}=r+2$, rearranged as $0=r^{2}-r-2=(r-2)(r+1)$. This has roots $2,-1$, so the general solution is $a_{n}=A 2^{n}+B(-1)^{n}$. We now use the initial conditions as $0=a_{0}=A 2^{0}+B(-1)^{0}=A+B$ and $6=a_{1}=A 2^{1}+B(-1)^{1}=2 A-B$. Solving the linear system $\{0=A+B, 6=2 A-B\}$ we get $A=2, B=-2$. Hence the specific solution is $a_{n}=2 \cdot 2^{n}+(-2) \cdot(-1)^{n}=2^{n+1}+2(-1)^{n+1}$.
8. Let $r \in \mathbb{R}$. Use induction to prove that for all $n \in \mathbb{N}_{0},(1-r) \sum_{i=0}^{n} r^{i}=1-r^{n+1}$.

Proof by (shifted) induction on n.
Base case, $n=0$: LHS is $(1-r) r^{0}=1-r$. RHS is $1-r^{1}=1-r$.
Inductive case: Assume that $(1-r) \sum_{i=0}^{n} r^{i}=1-r^{n+1}$. We now add $(1-r) r^{n+1}$ to both sides, getting $(1-r) \sum_{i=0}^{n+1} r^{i}=(1-r) r^{n+1}+(1-r) \sum_{i=0}^{n} r^{i}=(1-r) r^{n+1}+1-r^{n+1}=$ $r^{n+1}-r^{n+2}+1-r^{n+1}=1-r^{n+2}$. Hence $(1-r) \sum_{i=0}^{n+1} r^{i}=1-r^{n+2}$.
9. Without using the Classification Theorem, prove that $a_{n}=O\left(4^{n}\right)$, for $a_{n}=3^{n}$. Hint: induction.
We will first use induction to prove that $\forall n \in \mathbb{N}, 3^{n} \leq 4^{n}$. Base case, $n=1$: $3^{1}=3<4=4^{1}$. Assume now that $3^{n} \leq 4^{n}$. Multiply both sides by 3 to get $3^{n+1}=3 \cdot 3^{n} \leq 3 \cdot 4^{n}$. Now, since $3<4$, we multiply both sides by 4^{n} to get $3 \cdot 4^{n}<4 \cdot 4^{n}$. Combining, we conclude that $3^{n+1} \leq 4^{n+1}$.
Lastly, set $n_{0}=1, M=1$ and let $n \geq n_{0}$ be arbitrary. $\left|a_{n}\right|=3^{n} \leq 4^{n}=1\left|4^{n}\right|=M\left|4^{n}\right|$.
10. Without using the Classification Theorem, prove that $a_{n} \neq O\left(2^{n}\right)$, for $a_{n}=3^{n}$.

Let $n_{0} \in \mathbb{N}, M \in \mathbb{R}$ be arbitrary. Set $n=\max \left(n_{0}, 1+\left\lceil\frac{\ln M}{\ln 3-\ln 2}\right\rceil\right)$. We have $n \geq n_{0}$, and also $n>\frac{\ln M}{\ln 3-\ln 2}=\frac{\ln M}{\ln (3 / 2)}=\log _{3 / 2}(M)$. We exponentiate both sides to base $3 / 2$ to get $\left(\frac{3}{2}\right)^{n}>\left(\frac{3}{2}\right)^{\log _{3 / 2}(M)}=M$ or $\frac{3^{n}}{2^{n}}>M$. Hence $\left|a_{n}\right|=3^{n}>M 2^{n}=M\left|2^{n}\right|$.

