
MATH 245 S18, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction theorem, Nonconstructive
Existence Proof theorem, Existence and Uniqueness Proof theorem, Fibonacci numbers.

The Proof by Contradiction theorem states that for any propositions p, q, if (p∧¬q) ≡
F , then p → q is true. The Nonconstructive Existence Proof theorem states that if
(∀x ∈ D,¬P (x)) ≡ F , then ∃x ∈ D,P (x) is true. The Existence and Uniqueness
Proof theorem states that to prove there is exactly one x ∈ D for which P (x) holds,
we prove both (a) ∃x ∈ D,P (x) and (b) ∀x, y ∈ D, (P (x) ∧ P (y)) → (x = y). The
Fibonacci numbers are a recurrence given by F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2 (for
k ≥ 2).

2. Carefully define the following terms: Proof by (basic) Induction, Proof by Reindexed
Induction, big Omega (Ω), big Theta (Θ).

To prove ∀x ∈ N, P (x) by (basic) induction, we must (a) prove that P (1) is true, and
(b) prove ∀x ∈ N, P (x)→ P (x+1). To prove ∀x ∈ N, P (x) by reindexed induction, we
must (a) prove that P (1) is true, and (b) prove ∀x ∈ N with x ≥ 2, P (x− 1)→ P (x).
Given sequences an, bn, we say that an = Ω(bn) if ∃n0 ∈ N,∃M ∈ R,∀n ≥ n0,M |an| ≥
|bn|. Given sequences an, bn, we say that an = Θ(bn) if an = O(bn) and an = Ω(bn).

3. Suppose that an algorithm has runtime specified by recurrence relation Tn = 4Tn/2 + n2.
Determine what, if anything, the Master Theorem tells us.

In the notation of the Master Theorem, a = 4, b = 2, cn = n2. We calculate d =
log2 4 = 2. Since cn = n2 = Θ(n2) = Θ(nd), the “middle cn” case applies, telling us
that Tn = Θ(n2 log n).

4. Let x ∈ R. Prove that dxe is unique; that is, prove that there is at most one n ∈ Z with
n− 1 < x ≤ n.
Let n, n′ ∈ Z with n − 1 < x ≤ n and n′ − 1 < x ≤ n′. We have n − 1 < x ≤ n′ so
n− 1 < n′ and n < n′ + 1. But also n′ − 1 < x ≤ n so n′ − 1 < n. Combining the two
inequalities, we get n′ − 1 < n < n′ + 1. Applying Theorem 1.12 (since n, n′ ∈ Z), we
conclude that n = n′.

5. Let x ∈ R. Prove that dxe exists; that is, prove that there is at least one n ∈ Z with
n− 1 < x ≤ n.
We will use minimum element induction. Define S = {m ∈ Z : m ≥ x}, a nonempty
set of integers with x as a lower bound. Hence S has some minimum element n. x ≤ n
because n ∈ S. We have two cases: if n − 1 < x, we are done. If instead n − 1 ≥ x,
then n − 1 is an integer, and ≥ x, so n − 1 ∈ S. But then n wasn’t the minimum
element, a contradiction. Hence n− 1 < x ≤ n.



6. Let n ∈ Z. Prove that (n−1)n(n+1)
3

∈ Z.

We apply the Division Algorithm to get integers q, r with n = 3q + r and 0 ≤ r < 3.
There are three cases:
Case r = 0: (n−1)n(n+1)

3
= (n−1)3q(n+1)

3
= (n− 1)q(n + 1).

Case r = 1: (n−1)n(n+1)
3

= (3q+1−1)n(n+1)
3

= qn(n + 1).

Case r = 2: (n−1)n(n+1)
3

= (n−1)n(3q+2+1)
3

= (n− 1)n(q + 1).

In all three cases, (n−1)n(n+1)
3

is an integer.

7. Solve the recurrence given by a0 = 0, a1 = 6, an = an−1 + 2an−2 (for n ≥ 2).

The characteristic polynomial is r2 = r+2, rearranged as 0 = r2−r−2 = (r−2)(r+1).
This has roots 2,−1, so the general solution is an = A2n+B(−1)n. We now use the ini-
tial conditions as 0 = a0 = A20+B(−1)0 = A+B and 6 = a1 = A21+B(−1)1 = 2A−B.
Solving the linear system {0 = A + B, 6 = 2A−B} we get A = 2, B = −2. Hence the
specific solution is an = 2 · 2n + (−2) · (−1)n = 2n+1 + 2(−1)n+1.

8. Let r ∈ R. Use induction to prove that for all n ∈ N0, (1− r)
∑n

i=0 r
i = 1− rn+1.

Proof by (shifted) induction on n.
Base case, n = 0: LHS is (1− r)r0 = 1− r. RHS is 1− r1 = 1− r.
Inductive case: Assume that (1−r)

∑n
i=0 r

i = 1−rn+1. We now add (1−r)rn+1 to both
sides, getting (1− r)

∑n+1
i=0 ri = (1− r)rn+1 + (1− r)

∑n
i=0 r

i = (1− r)rn+1 + 1− rn+1 =
rn+1 − rn+2 + 1− rn+1 = 1− rn+2. Hence (1− r)

∑n+1
i=0 ri = 1− rn+2.

9. Without using the Classification Theorem, prove that an = O(4n), for an = 3n. Hint:
induction.
We will first use induction to prove that ∀n ∈ N, 3n ≤ 4n. Base case, n = 1:
31 = 3 < 4 = 41. Assume now that 3n ≤ 4n. Multiply both sides by 3 to get
3n+1 = 3 · 3n ≤ 3 · 4n. Now, since 3 < 4, we multiply both sides by 4n to get
3 · 4n < 4 · 4n. Combining, we conclude that 3n+1 ≤ 4n+1.

Lastly, set n0 = 1,M = 1 and let n ≥ n0 be arbitrary. |an| = 3n ≤ 4n = 1|4n| = M |4n|.

10. Without using the Classification Theorem, prove that an 6= O(2n), for an = 3n.

Let n0 ∈ N, M ∈ R be arbitrary. Set n = max(n0, 1 +
⌈

lnM
ln 3−ln 2

⌉
). We have n ≥ n0,

and also n > lnM
ln 3−ln 2

= lnM
ln(3/2)

= log3/2(M). We exponentiate both sides to base 3/2 to

get (3
2
)n > (3

2
)log3/2(M) = M or 3n

2n
> M . Hence |an| = 3n > M2n = M |2n|.


