MATH 245 S18, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction theorem, Nonconstructive
Existence Proof theorem, Existence and Uniqueness Proof theorem, Fibonacci numbers.
The Proof by Contradiction theorem states that for any propositions p, g, if (p A —q) =
F, then p — ¢ is true. The Nonconstructive Existence Proof theorem states that if
(Vx € D,-P(z)) = F, then 3z € D, P(z) is true. The Existence and Uniqueness
Proof theorem states that to prove there is exactly one x € D for which P(z) holds,
we prove both (a) 3z € D, P(z) and (b) Vz,y € D,(P(z) A P(y)) — (z = y). The
Fibonacci numbers are a recurrence given by Fy = 0, F} = 1, F, = Fy_1 + Fj_» (for
k> 2).

2. Carefully define the following terms: Proof by (basic) Induction, Proof by Reindexed
Induction, big Omega (2), big Theta (©).
To prove Vo € N, P(x) by (basic) induction, we must (a) prove that P(1) is true, and
(b) prove Vz € N, P(x) — P(x+1). To prove Yz € N, P(z) by reindexed induction, we
must (a) prove that P(1) is true, and (b) prove Vo € N with > 2, P(z — 1) — P(x).
Given sequences a,, b,, we say that a,, = Q(b,) if Ing € N,IM € R,Vn > ny, M|a,| >
|b,,|. Given sequences ay, b, we say that a, = O(b,) if a, = O(b,) and a,, = Q(b,).

3. Suppose that an algorithm has runtime specified by recurrence relation T,, = 4T, /5 + n?.
Determine what, if anything, the Master Theorem tells us.
In the notation of the Master Theorem, a = 4,b = 2,¢, = n?. We calculate d =
log, 4 = 2. Since ¢, = n? = O(n?) = O(n?), the “middle ¢,” case applies, telling us
that T,, = ©(n%logn).

4. Let x € R. Prove that [x] is unique; that is, prove that there is at most one n € Z with
n—1<z<n.
Let nn' e Zwithn—1<ax<nandn' —1<z<n. Wehaven —1 <z <n so
n—1<n andn<n'+1. Butalson’—1 <z <nson' —1<n. Combining the two
inequalities, we get n’ — 1 <n < n’ 4+ 1. Applying Theorem 1.12 (since n,n’ € Z), we
conclude that n =n/'.

5. Let x € R. Prove that [z] exists; that is, prove that there is at least one n € Z with
n—1<z<n.
We will use minimum element induction. Define S = {m € Z : m > x}, a nonempty
set of integers with = as a lower bound. Hence S has some minimum element n. z < n
because n € S. We have two cases: if n — 1 < x, we are done. If instead n — 1 > =,
then n — 1 is an integer, and > z, so n — 1 € S. But then n wasn’t the minimum
element, a contradiction. Hence n — 1 < x < n.



10.

Let n € Z. Prove that % € Z.

We apply the Division Algorithm to get integers ¢,r with n = 3¢+ and 0 < r < 3.
There are three cases:

Case r = 0: (”_l)g("ﬂ) — (oo 1)33‘7 D) — (n—1)g(n+1).
Case 7 = 1: In=lntitl) _ Goelontnl) — gy 4 1)
Case r = 2: (”_l)g(”H) (n=L)n §q+2+1) (n—1)n(qg+1).

(n=Dn(n+1) .

In all three cases, 3

is an integer.

Solve the recurrence given by ag = 0,a1 = 6, a, = a1 + 2a,_o (for n > 2).

The characteristic polynomial is 72 = r+2, rearranged as 0 = r* —r—2 = (r—2)(r+1).
This has roots 2, —1, so the general solution is a,, = A2"+ B(—1)". We now use the ini-
tial conditions as 0 = ag = A2°+B(—1)? = A+ Band 6 = a; = A2'+B(-1)! =24-B.
Solving the linear system {0 = A+ B,6 = 2A — B} we get A =2, B = —2. Hence the
specific solution is a,, = 2 - 2" + (=2) - (—=1)" = 2" 4 2(—1)"*+1,

Let r € R. Use induction to prove that for all n € No, (1 —r) Y " r' =1 —r"th
Proof by (shifted) induction on n.

Base case, n =0: LHSis (1 —7)r'=1—7r. RHSis1—7r!=1—7.

Inductive case: Assume that (1—7) 37 7" = 1—r"*"1. We now add (1—r)r"*! to both
sides, getting (1—7) 3207 7l = (1—r)r™ 4 (1 —7) Zl o' = (L=r)r™ 1=yt =

prtt —pnt2 4 — gt = 1 — 2 Hence (1 — 1) Z?J% ri=1—pr"t2,

Without using the Classification Theorem, prove that a, = O(4"), for a, = 3". Hint:

induction.
We will first use induction to prove that Vn € N,3" < 4". Base case, n = 1:

3! = 3 < 4 = 41 Assume now that 3" < 4" Multiply both sides by 3 to get
3l = 3.3" < 3-4" Now, since 3 < 4, we multiply both sides by 4" to get
3-4" < 4-4" Combining, we conclude that 37+ < 4n+1,

Lastly, set ng = 1, M = 1 and let n > ng be arbitrary. |a,| = 3" < 4" = 1|4"| = M|4"|.

Without using the Classification Theorem, prove that a, # O(2"), for a, = 3".

Let ng € N, M € R be arbitrary. Set n = max(ng, 1 + (MD We have n > ny,

In3—In2
and also n > =i — 13?3%) = logs5(M). We exponentiate both sides to base 3/2 to

get (3)" > (%)logg/z(M) = M or 32 > M. Hence |a,| = 3" > M2" = M|2"|.




